Программный модуль «АИК» для автоматизации процесса классификации и обработки инцидентов и заявок, поступающих из ITSM-системы, с применением алгоритмов искусственного интеллекта

ОПИСАНИЕ ПРОЦЕССОВ, ОБЕСПЕЧИВАЮЩИХ ПОДДЕРЖАНИЕ ЖИЗНЕННОГО ЦИКЛА

АННОТАЦИЯ

В настоящем документе приведено описание процессов, обеспечивающих поддержание жизненного цикла программного обеспечения «АИК» для автоматизации процесса классификации и обработки инцидентов и заявок в ITSM-системе на базе алгоритмов искусственного интеллекта.

Настоящий документ содержит:

- Назначение и функциональные характеристики системы;
- Роли исполнителей, принимающих участие в процессах жизненного цикла программы;
- Модель жизненного цикла системы.

Описание жизненного цикла приведено в соответствии с ГОСТ Р ИСО/МЭК 12207-2010.

Содержание

1. Общие сведения	5
1.1. Назначение системы	
1.2 Возможности системы	
1.3 Состав системы	
2. Роли исполнителей	10
3. Стадии жизненного цикла Системы	13
3.1. Перечень стадий жизненного цикла Системы	13
3.2. Стадия сбора и анализа требований	13
3.3. Стадия проектирования архитектуры и разработки	14
3.4. Стадия передачи	16
3.5. Стадия эксплуатации и сопровождения	
3.6. Стадия изъятия и утилизации	19

термины и определения

В настоящем документе используются следующие термины:

Термин	Определение
БД	База данных
ЖЦ	Жизненный цикл
ПО	Программное обеспечение
ИТ	Информационные технологии
Поставщик	Организация или лицо, которое вступает в соглашение с приобретающей стороной на поставку продукта или услуги
Продукт, система	Программа для ЭВМ, обеспечивающая автоматизация деятельности
Разработчик	Организация, которая выполняет разработку задач (в том числе анализ требований, проектирование, приемочные испытания) в процессе жизненного цикла
СУБД	Система управления базами данных
ТП	Техническая поддержка
ITSM-система	Система управления сервисом для покрытия бизнес-потребностей, включающая в себя регистрацию инцидентов
ML Flow	Платформа, предназначенная для управления жизненным циклом моделей машинного обучения
NTFS	Стандартная файловая система для семейства операционных систем Windows NT, поддерживающая хранение метаданных
JSON	Текстовый формат обмена данными, основанный на JavaScript
PostgreSQL	Свободная объектно-реляционная система управления базами данных
ИИ	Искусственный интеллект
Grafana	Платформа для мониторинга, анализа и визуализации данных

1. Общие сведения

1.1. Назначение системы

Программный модуль «АИК» для автоматизации процесса классификации и обработки инцидентов и заявок, поступающих из ITSM-системы с применением алгоритмов искусственного интеллекта (далее - Система), предназначена для компаний любых отраслей со зрелой ИТ-структурой и выстроенными ИТ-процессами, в бизнеспроцессах которых присутствует рутинные, повторяющиеся и формализуемые операции, такие как:

- Назначение заявок на конкретную группу исполнителей;
- Подбор решения на базе ранее закрытых аналогичных заявок;
- Классификация и категория заявок;
- Подсказки исполнителю на основании похожих инцидентов;
- Аналитика данных о поступивших, решенных и нерешенных заявках.

АИК помогает автоматизировать данные операции, что облегчает выполнение задач Заказчиков при анализе и принятии решений. Благодаря этому, ресурсы Заказчиков будут направлены на более сложную интеллектуальную деятельность, которая не будет отягощена повторяющимися задачами.

1.2 Возможности системы

Система позволяет выполнять следующие задачи:

- 1. Обеспечивать возможность загрузки и хранения новых заявок без назначенных исполнителей из сторонней ITSM системы;
- 2. Распознавать все необходимые поля заявки для принятия решения о ее назначении;
- 3. Проводить анализ и классификацию новых заявок без назначенного исполнителя с помощью обученных моделей и предлагать решение по назначению исполнителя из заданного списка исполнителей;
- 4. Выгружать данные о предлагаемом исполнителе в необходимом формате для ITSM системы формате;
- 5. Загружать исполненные заявки из файлового хранилища;
- 6. Распознавать и хранить информацию об исполненных заявках;
- 7. Проводить процесс дообучения моделей с помощью информации в исполненных заявках;

- 8. Обеспечивать возможность настройки бизнес-логики принятия решения о назначении заявок с помощью заранее установленных правил;
- 9. Проводить мониторинг процесса работы системы и предоставлять отчетность со сравнением предсказаний и фактических исполненных заявок.

1.3 Состав системы

При проектировании Системы использовались принципы микросервисной архитектуры. Основные компоненты Системы представлены на рисунке 1.

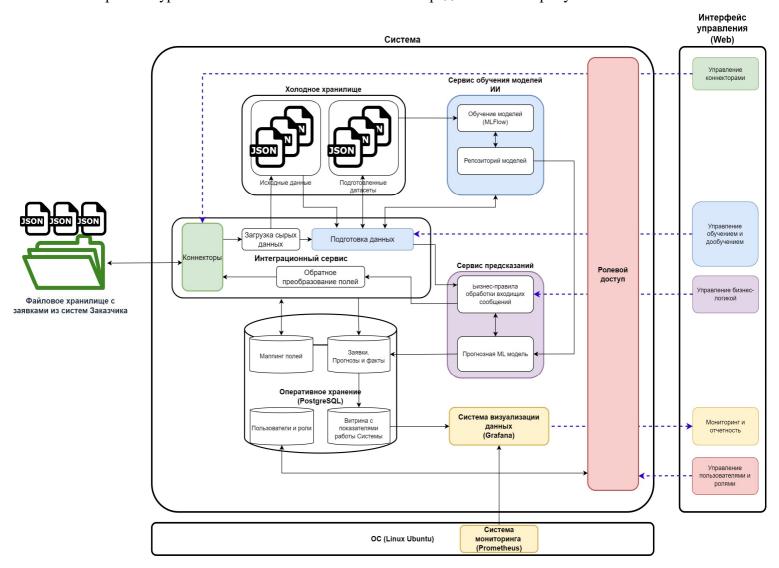


Рисунок 1. Схема проекта.

Основными компонентами Системы являются:

- **1. Файловое хранилище** с заявками любого типа, которые заводятся клиентами и обрабатываются специалистами Заказчика.
- **2. Интеграционный сервис** Сервис, обеспечивающий интеграцию и прохождение потоков данных в рамках Системы. Состоит из следующих логических блоков:

- **Коннектор** сервис, отвечающий за подключение к файловому хранилищу с заявками Заказчика. Настраивается через соответствующий раздел веб-Интерфейса управления.
- Сервис загрузки сырых данных отвечает за получение и загрузку всех данных, полученных из файлового хранилища, в Холодное хранилище Системы. При загрузке формируется таблица с маппингом загруженных полей, которая хранится в Оперативном хранилище.
- Сервис подготовки данных отвечает за преобразование сырых данных из Холодного хранилища в вид, необходимый для обучения моделей машинного обучения (ML) в соответствии с правилами, заданными в разделе Управления обучением и дообучением Интерфейса Управления.
- **Сервис обратного преобразования данных** отвечает за обратное преобразование данных для корректной записи ответа Системы в нужное поле заявки.
- **3. Холодное хранилище** раздел на диске (NTFS), предназначенный для хранения Заказчика, полученных из файлового хранилища. Разделен на два основных раздела:
 - Исходные данные все заявки из систем Заказчика, записанные в формате JSON.
 - **Подготовленные** датасеты преобразованные заявки для обучения моделей машинного обучения. Под каждый запрос обучения/дообучения, требующий уникального набора данных, формируется отдельный датасет, хранящийся в данном разделе.
- **4.** Сервис обучения моделей ИИ отвечает за обучение, дообучение и сохранение моделей ИИ. В сервисе находится ряд предобученных на открытых датасетах моделей машинного обучения с открытым исходным кодом, разрешенных для коммерческого использования, которые дообучаются на заявках из систем Заказчика, в рамках работы сервиса. Состоит из двух частей:
 - Обучение моделей ИИ сервис на базе программного продукта с открытым исходным кодом MLFlow предназначенный для реализации полного цикла обучения модели и вывода ее в промышленную эксплуатацию.
 - Репозиторий моделей предназначен для хранения обученных моделей и их метрик.
- **5.** Сервис предсказаний модуль, отвечающий за обработку новых заявок в режиме реального времени. Состоит из двух частей:
 - **Бизнес-правила обработки входящих сообщений** сервис, реализующий логику обработки поступающих заявок из файлового хранилища. Логика обработки задается в разделе Управление бизнес-логикой интерфейса Управления Системой.

- Прогнозная ML-модель обученная и реализованная как сервис выбранная модель машинного обучения. Принимает на вход заявку (или ряд заявок) и выдает прогноз того значения, на которое была обучена в рамках работы сервиса «Обучения моделей ИИ». Логика обработки результатов прогнозирования определяется в сервисе «Бизнес-правила обработки входящих сообщений».
- **6. Оперативное хранилище** база данных с открытым исходным кодом PostgreSQL, которая используется для хранения различных данных, необходимых для работы модулей и сервисов:
 - **Маппинг полей** для хранения преобразования структуры полей между заявками в системе Заказчика и структурой JSON для обучения моделей. Используется для прямого и обратного преобразования поступающих заявок.
 - **Пользователи и роли** для хранения подсистемой Ролевого доступа информации по пользователям, паролям (в зашифрованном виде) и их ролям.
 - Заявки. Прогнозы и факты для хранения краткой информации по всем заявкам в Системе с указанием прогнозного значения (ответ сервиса «Прогнозная ML модель») и фактического значение прогнозируемого поля, записанного после закрытия заявки.
 - Витрина с показателями работы Системы вычисленная витрина с основными показателями Системы. Используется для дальнейшей визуализации в интерфейсе управления в разделе Мониторинг и отчетность.
- 7. Система визуализации данных сервис, реализованный на базе системы визуализации с открытым исходным кодом Grafana, и использующийся для отображения основных показателей работы Системы. Отображение показателей встраивается в Интерфейс управления в раздел Мониторинг и отчетность.
- **8.** Система ролевого доступа модуль, отвечающий за заведение, авторизацию пользователей и назначение прав доступа.
- **9. Интерфейс управления** веб-интерфейс доступа к управлению Системой. Состоит из пяти основных разделов:
 - Управление коннекторами используется для заведения нового коннектора в Системе, а также для формирования первоначального набора данных для загрузки из системы Заказчика.
 - Управление обучением и дообучением используется для обучения моделей машинного обучения на данных Заказчика, организации репозитория и вывода моделей в эксплуатацию.

- Управление бизнес-логикой используется для формирования логических правил обработки новых заявок, поступающих в систему Заказчика с помощью прогнозов обученной модели машинного обучения или на основе стандартных правил.
- Мониторинг и отчетность используется для отображения статистики работы Системы, мониторинга качества работы моделей машинного обучения, а также мониторинга за работой как аппаратных элементов Системы, так и ее программных компонент.
- Управление пользователями и ролями используется для авторизации пользователей, а также за заведение новых пользователей и назначение прав доступа.

2. Роли исполнителей

1. Функциональный заказчик

В обязанности функционального заказчика входят:

- формирование основных бизнес-требований к Системе;
- контроль соответствия результата заданию.

2. Руководитель проекта

В обязанности руководителя проекта входят:

- управление процессом разработки Системы;
- планирование и согласование сроков и ресурсов;
- контроль соответствия работ согласованному с функциональным заказчиком плану проекта;
- формирование и предоставление функциональному заказчику промежуточных и итоговых отчётов о ходе разработки Системы;
- принятие решения о выпуске релиза Системы.

3. Ведущий программист (архитектор)

В обязанности ведущего программиста входят:

- принятие ключевых решений по архитектуре Системы;
- подготовка состава задач на реализацию изменений в исходных кодах;
- определение требований к исполнителям;
- определение требований к технологиям производства и инструментам разработки;
- разработка и внесение изменений в проектную документацию.

4. Программист

В обязанности программиста входят:

- реализация функциональности подсистем или модулей Системы согласно заданию
 Ведущего программиста и в соответствии с планом, подготовленным руководителем проекта;
- первичный контроль качества и работоспособности разрабатываемых компонентов
 Системы;
- подготовка технического описания реализации функциональных возможностей разрабатываемых компонентов Системы;
- устранение ошибок ПО и исправление дефектов, обнаруженных в процессе тестирования;
- предоставление отчётов о состоянии выполнения заданий.

5. Инженер тестирования

В обязанности инженера тестирования входят:

- проверка работоспособности Системы в соответствии с техническими условиями;
- подготовка стендов для проверки работоспособности Системы в соответствии с набором сценариев использования;
- подготовка отчётов о составе и опасности обнаруженных в ПО дефектов;
- воспроизведение на стендах проблем, обнаруженных инженером технической поддержки;
- планирование сроков и ресурсов на выполнение тестирования ПО;
- предоставление отчётов о результатах тестирования Системы.

6. Инженер поддержки процесса и инфраструктуры разработки ПО

В обязанности инженера поддержки процесса и инфраструктуры разработки ПО входят:

- поддержка и развитие сборочной системы (сборка исполняемых модулей и библиотек, запуск различных утилит для подготовки дистрибутива продукта);
- развитие утилит контроля регламента разработки (качество кода, контроль переводов ресурсов, контроль информации о версии, контроль настроек проектов и т.п.);
- стандартизация окружения разработки;
- настройка инфраструктуры с учётом особенностей разрабатываемого ПО;
- поддержка разработки, основанной на отдельных ветках под каждую новую функцию продукта;
- создание шаблонов сборки для веток;
- выполнение регламента работы с итерационными ветками разработки.

7. Аналитик

В обязанности аналитика входят:

- формирование системных требований к продукту;
- контроль соответствия результата системным и бизнес-требованиям;
- разработка технической и пользовательской документации на Систему;
- документирование изменений, производимых в Системе;
- контроль документов проекта на соответствие принятому стандарту документирования;
- принятие участия в решении запросов, переданных во вторую линию поддержки.

8. Инженер технической поддержки

В обязанности инженера технической поддержки входят:

- приём и маршрутизация заявок от пользователей Системы;
- консультация пользователей по возникающим вопросам, связанным с Системой;

- управление критическими инцидентами и оповещение пользователей о статусе заявки;
- сопровождение и участие в обновлении установленного ПО;
- диагностика и устранение неисправностей.

3. Стадии жизненного цикла Системы

3.1. Перечень стадий жизненного цикла Системы

В процессе развития Системы используется спиральная модель жизненного цикла и релизный подход при обновлении. Этапы жизненного цикла Системы проходят несколько итераций. Результат каждой итерации представляет собой очередную версию программного продукта, которая постоянно совершенствуется.

Модель жизненного цикла Системы включает в себя следующие стадии:

- 1) стадия сбора и анализа требований;
- 2) стадия проектирования архитектуры и разработки;
- 3) стадия передачи;
- 4) стадия эксплуатации и сопровождения;
- 5) стадия изъятия и утилизации.

Рисунок 2. Спиральная модель

3.2. Стадия сбора и анализа требований

В рамках данной стадии осуществляется взаимодействие с функциональным заказчиком, направленное на выявление требований к Системе, потребностей в изменении существующей Системы, разработке дополнительных подсистем, компонентов.

На данной стадии применяются следующие процессы:

- процесс определения цели и назначения Системы;
- процесс сбора требований;
- процесс систематизации и анализа требований;

Роли исполнителей, действующих на данной стадии:

- функциональный заказчик;
- аналитик;
- руководитель проекта;
- ведущий программист.

Результатом данной стадии является техническое задание на проектирование и разработку Системы.

3.3. Стадия проектирования архитектуры и разработки

В рамках стадии проектирования определяются функциональные возможности Системы и ее место в программной архитектуре предприятия, определяется перечень компонентов Системы и необходимых доработок.

На данной стадии применяются следующие технические процессы:

- процесс проектирования архитектуры;
- процесс реализации;
- процесс комплексирования системы;
- процесс тестирования системы;
- процесс менеджмента документации.

Роли исполнителей, действующих на данной стадии:

- руководитель проекта;
- ведущий программист;
- программист;
- аналитик;
- инженер тестирования;
- инженер поддержки процесса и инфраструктуры разработки ПО.

К моменту старта реализации подготавливается среда разработки и определяется методология управления разработкой.

Комплексирование (сборка) приложений Системы осуществляется из исходного кода. Исходный код хранится в системе управления версиями. Для формирования сборки приложений Системы разработаны специализированные автоматизированные процедуры.

В результате работы инструментов сборки на выходе получаются:

- готовые к установке приложения/компоненты Системы;
- набор скриптов для модификации модели данных Системы.

На данной стадии осуществляется тестирование Системы в различных контурах:

- контур разработки – модульное тестирование;

- контур тестирования интеграционное и системное тестирование;
- контур регрессионного тестирования регрессионное тестирование;
- контур нагрузочного тестирования нагрузочное тестирование.

Применяемые виды тестирования:

- 1) Модульное тестирование изолированные испытания отдельных программных модулей Системы. Объектом испытания может служить отдельная функция, метод, процедура, модуль или программный объект. Если модуль взаимодействует с внешними системами, для тестирования применяются специализированные программные модули «заглушки», имитирующие внешние системы.
- 2) Интеграционное тестирование испытания, при которых программные модули Системы объединяются логически и тестируются как группа. Целью тестирования является выявление проблем взаимодействия отдельных компонентов Системы или взаимодействия Системы с внешними системами.
- 3) Регрессионное тестирование испытания ранее протестированной Системы, позволяющие убедиться, что внесенные изменения не повлекли за собой появления дефектов в той части программы, которая не менялась.
- 4) Системное тестирование испытания, направленные на подтверждение корректности поведения Системы в целом, подразумевающее сквозную проверку взаимодействия всех компонентов Системы и взаимодействия Системы с внешними системами.
- 5) Юзабилити-тестирование (проверка эргономичности) исследование, выполняемое с целью определения, удобен ли пользовательский интерфейс Системы для его предполагаемого применения. Проверка эргономичности метод оценки удобства продукта в использовании, основанный на привлечении пользователей в качестве испытателей и суммировании полученных от них выводов.

Решения о переводе Системы на следующую фазу разработки или следующую стадию жизненного цикла принимаются в зависимости от результатов тестирования в соответствующих контурах:

- тестирование в контуре разработки решение о возможности установки сборки в тестовый контур;
- тестирование в контуре тестирования решение о возможности включения изменения в сборку для регрессионного тестирования и нагрузочного тестирования;

 тестирование в контурах регрессионного и нагрузочного тестирования – решение о начале квалификационного тестирования Системы (стадия приёмки).

Стадия завершается готовностью релиза Системы к предварительным испытаниям, готовностью программной документации в следующем составе:

- 1) Программа и методика испытаний;
- 2) Руководство администратора;
- 3) Руководство менеджера.

Результатом стадии разработки также могут являться дополнительные требования, протокол выполненных работ и прочие документы, предназначенные для использования на следующих стадиях.

3.4. Стадия передачи

В рамках стадии выполняется подготовка экземпляра системы к опытно- промышленной эксплуатации, подготовка конечных пользователей.

Стадия может включать в себя процессы улучшения программного продукта.

В рамках данной стадии:

- передаётся на утверждение функциональному заказчику Программа и методика испытаний (ПМИ);
- производится установка и настройка Системы;
- проводится приёмка Системы, включающая:
 - 1. Предварительные испытания:

В ходе предварительных испытаний проверяется работоспособность и соответствие техническому заданию, устраняются выявленные неисправности и недостатки. Испытания должны включать системное тестирование и нагрузочное тестирование. После проведения предварительных испытаний Система передается в опытную эксплуатацию.

2. Опытную эксплуатацию:

В ходе опытной эксплуатации выполняется работа с программным продуктом по назначению, собираются статистические данные о характеристиках и результатах функционирования, в том числе проводится юзабилити-тестирование. При необходимости осуществляется доработка программного продукта.

3. Приёмочные испытания:

Испытания проводятся после завершения опытной эксплуатации. По результатам приемочных испытаний принимается решение о выпуске релиза Системы (начале серийной эксплуатации Системы).

На данной стадии применяются следующие технические процессы:

- процесс установки и конфигурации Системы;
- подключение технических средств;
- установка прав доступа.

Роли исполнителей, действующих на данной стадии:

- функциональный заказчик;
- руководитель проекта;
- ведущий программист;
- аналитик;
- инженер тестирования;
- инженер поддержки процесса и инфраструктуры разработки ПО.

Результатом стадии является протокол об окончании опытно-промышленной эксплуатации и готовность к промышленной эксплуатации.

3.5. Стадия эксплуатации и сопровождения

Началом стадии применения Системы служит её установка и передача для применения по назначению в соответствии с моделью процесса поставки по ГОСТ Р ИСО/МЭК 122072010.

В рамках настоящего документа процесс поставки программного обеспечения для автоматизации процесса классификации и обработки инцидентов и заявок в ITSM-системе на базе алгоритмов искусственного интеллекта «АИК» не рассматривается.

Сопровождение Системы состоит в обеспечении техническим обслуживанием и сопровождением, и другими видами поддержки функционирования и использования Системы в соответствии с согласованными условиями поставки Системы приобретающей стороне.

В рамках данной стадии:

- осуществляется настройка Системы;
- выполняются консультации пользователей Системы;
- осуществляется контроль работы Системы, и анализ собранных данных об отклонениях и отказах;
- определяются новые требования к Системе и формирование решений, необходимых для реализации данных модификаций;

- производятся модификации Системы;
- по мере необходимости обновляется связанная с изменениями системная и программная документация;
- обновленные компоненты Системы помещаются в среду приобретающей стороны;
- сведения о модификации Системы доводятся до всех затронутых обновлениями сторон.

На данной стадии применяются следующие технические процессы:

- процесс функционирования программных средств.
- процесс сопровождения программных средств.

Роли исполнителей, действующих на данной стадии:

- приобретающая сторона;
- поставщик;
- аналитик;
- ведущий программист;
- программист;
- инженер технической поддержки.

Техническая поддержка пользователей осуществляется через Центр поддержки пользователей. Все обращения в Центр поддержки пользователей регистрируются и классифицируются по типам (Таблица 1).

No	Тип	Формат текста описания заявки	
1	Инцидент	Несоответствие работы Системы утвержденным	
		техническим заданиям и эксплуатационной	
		документации, вывод сообщений об ошибках	
2	Запрос на изменение	Замечание/предложение по работе Системы (запрос на	
		изменение/расширение функциональности)	
3	Консультация	Просьба пользователя о пояснении работы в Системе,	
		уточнение каких-либо непонятных моментов	

Устранение ошибок в работе Системы производится путём изменения настроек среды выполнения Системы или модификации программного кода Системы с выпуском новой сборки, которая передается приобретающей стороне. При необходимости корректируется документация на Систему.

На основании анализа обращений пользователей Системы, собранных данных о недостатках и отказах Системы функциональный заказчик может самостоятельно принять

решение о модернизации Системы. Модернизация подразумевает развитие функциональных возможностей Системы, повышение удобства использования и администрирования. После модернизации производится выпуск нового релиза Системы. Для выполнения модернизации Системы инициируется переход на стадию проектирования архитектуры и разработки.

В случае заинтересованности в расширении функциональности Системы приобретающая сторона направляет поставщику новые требования к Системе. Требования анализируются поставщиком, далее согласовываются условия оказания услуг по доработке Системы, сроки и стоимость работ. Для выполнения доработки Системы инициируется переход на стадию проектирования архитектуры и разработки.

В случае принятия приобретающей стороной решения о завершении эксплуатации Системы инициируется переход на стадию изъятия и утилизации.

3.6. Стадия изъятия и утилизации

В соответствии с ГОСТ Р ИСО/МЭК 12207-2010 модель процесса прекращения применения программных средств предусматривает прекращение деятельности организации (обладателя исключительного права) по поддержке функционирования и сопровождения или деактивирует, демонтирует и удаляет поврежденные программные продукты, отправляя их в финальное состояние и возвращая окружающую среду в приемлемые условия.

Прекращение применения Системы как серийного программного продукта означает деактивацию и удаление Системы из среды конкретного покупателя (приобретающей стороны).

Деятельность организации (подразделения) по поддержке функционирования и сопровождению может быть прекращена по решению обладателя исключительного права на программное обеспечение для автоматизации процесса классификации и обработки инцидентов и заявок в ITSM-системе на базе алгоритмов искусственного интеллекта «АИК».

Причиной перевода Системы в данную стадию может служить замещение новой системой, катастрофический отказ, неэффективность дальнейшего применения.

На данной стадии применяются следующие технические процессы:

- процесс прекращения применения программных средств.

Роли исполнителей, действующих на данной стадии:

- приобретающая сторона;
- поставщик;

- функциональный заказчик;
- аналитик;
- инженер технической поддержки.

Все заинтересованные стороны оповещаются о планах и действиях по выводу Системы из эксплуатации.

Вся связанная документация по разработке, журналы и коды помещаются в архивы. Используемые данные или данные, связанные с прекращением применения Системы, должны быть доступны в соответствии с требованиями законодательства, локальных нормативных актов, соглашений и условий поставки.